Abstract

Identifying the descriptors for the synergistic catalytic activity of bifunctional oxide-zeolite catalysts constitutes a formidable challenge in realizing the potential of tandem hydrogenation of CO2 to hydrocarbons (HC) for sustainable fuel production. Herein, we combined CH3OH synthesis from CO2 and H2 on In2O3 and methanol-to-hydrocarbons (MTH) conversion on HZSM-5 and discerned the descriptors by leveraging the distance-dependent reactivity of bifunctional In2O3 and HZSM-5 admixtures. We modulated the distance between redox sites of In2O3 and acid sites of HZSM-5 from milliscale (∼10 mm) to microscale (∼300 μm) and observed a 3-fold increase in space-time yield of HC and CH3OH (7.5 × 10-5 molC gcat-1 min-1 and 2.5 × 10-5 molC gcat-1 min-1, respectively), due to a 10-fold increased rate of CH3OH advection (1.43 and 0.143 s-1 at microscale and milliscale, respectively) from redox to acid sites. Intriguingly, despite the potential of a three-order-of-magnitude enhanced CH3OH transfer at a nanoscale distance (∼300 nm), the sole product formed was CH4. Our reactivity data combined with Raman, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) revealed the occurrence of solid-state-ion-exchange (SSIE) between acid sites and Inδ+ ions, likely forming In2O moieties, inhibiting C-C coupling and promoting CH4 formation through CH3OH hydrodeoxygenation (HDO). Density functional theory (DFT) calculations further revealed that CH3OH adsorption on the In2O moiety with preadsorbed and dissociated H2 forming an H-In-OH-In moiety is the likely reaction mechanism, with the kinetically relevant step appearing to be the hydrogenation of the methyl species. Overall, our study revealed that efficient CH3OH transfer and prevention of ion exchange are the key descriptors in achieving catalytic synergy in bifunctional In2O3/HZSM-5 systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call