Abstract

Force generation in muscle during contraction arises from direct interaction of the two main protein components of the muscle, myosin and actin. The process is driven by the energy liberated from the hydrolysis of ATP. In the presence of CaATP the energy released from hydrolysis produces conformational changes in myosin and actin, which can be manifested as an internal motion of myosin head while bound to actin. It is suggested that myosin heads attached to actin produce conformational changes during the hydrolysis process of ATP, which results in a strain in the head portion of myosin in an ATP-dependent manner. These structural changes lead to a large rotation of myosin neck region relieving the strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call