Abstract

The electronic structure of the perovskite ${\mathrm{LaCoO}}_{3}$ for different spin states of Co ions was calculated in the local-density approximation LDA+U approach. The ground state is found to be a nonmagnetic insulator with Co ions in a low-spin state. Somewhat higher in energy, we find two intermediate-spin states followed by a high-spin state at significantly higher energy. The calculations show that Co 3d states of ${\mathit{t}}_{2\mathit{g}}$ symmetry form narrow bands which could easily localize, while ${\mathit{e}}_{\mathit{g}}$ orbitals, due to their strong hybridization with the oxygen 2p states, form a broad \ensuremath{\sigma}* band. With temperature variation which is simulated by a corresponding change of the lattice parameters, a transition from the low- to intermediate-spin state occurs. This intermediate-spin (occupation ${\mathit{t}}_{2\mathit{g}}^{5}$${\mathit{e}}_{\mathit{g}}^{1}$) can develop an orbital ordering which can account for the nonmetallic nature of ${\mathrm{LaCoO}}_{3}$ at 90 KT500 K. Possible explanations of the magnetic behavior and gradual insulator-metal transition are suggested. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.