Abstract

This study aims at assessing the global dynamic behavior, elastic deformability, closing energy and turbulence of rigid versus deformable stented (RS vs DS) valve systems with deformable and rigid textile materials (DT vs RT) through studying the stent-valve interaction compared to a bioprosthetic material in transcatheter aortic valves (TAV).Three 19 mm stented textile TAV designs (RS-DT, RS-RT and DS-RT) with different stent and leaflet properties were tested and compared with a control bioprosthetic TAV (RS-DB) in a left heart simulator flow loop under physiological pressure and flow. Particle Image Velocimetry and high speed imaging were performed. Pressure gradients (PG), leakage fractions (LF), Pinwheeling indices (PI), closing energy (E) and Reynolds shear stresses (RSS) were calculated.(a) PGs and LFs were 11.86 ± 0.51 mmHg, 11.70 ± 0.34%; 8.84 ± 0.40 mmHg, 29.80 ± 0.76%; 11.59 ± 0.12 mmHg, 14.23 ± 1.64%; and 7.05 ± 0.09 mmHg, 12.08 ± 0.45% % for RS-DB, RS-DT, RS-RT and DS-RT respectively. (b) PIs were 15.79 ± 2.34%, 4.36 ± 0.84%, 2.47 ± 0.51% and 2.03 ± 0.33% for RS-DB, RS-DT, RS-RT and DS-RT respectively. (c) E is lowest for DS-RT (0.0010 ± 0.0002 J) followed by RS-RT (0.0017 ± 0.0002 J), RS-DB (0.0023 ± 0.0004 J) and highest with RS-DT (0.0036 ± 0.0007 J). (d) At peak systole lowest RSS was obtained with RS-DT (87.82 ± 0.58 Pa) and highest with DS-RT (122.98 ± 1.87 Pa).PGs, LFs, PIs and E were improved with DS-RT compared to other textile TAVs and RS-DB. Despite achieving more RSS than the rest of TAVs, DS-RT still falls within the same range of RSS produced by the other 2 valves and control exceeding the threshold for platelet activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.