Abstract

Lithium tetrahydridoboranate is among the materials with the highest hydrogen content and has great potential as a possible H-2-storage material, although, the release and uptake of H-2 is not fully understood. In this work, LiBH4 was studied by in situ synchrotron radiation powder X-ray diffraction (PXD) and solid state CP/MAS NNIR both at variable temperatures. This study revealed two new phases observed during dehydrogenation of LiBH4. Phase I is hexagonal, a = 4.93(2) and c = 13.47(3) angstrom and is observed in the temperature range -200-300 degrees C, and phase II is orthorhombic, a = 8.70(1), b = 5.44(1) and c = 4.44](8) angstrom and is observed in the temperature range similar to 300-400 degrees C applying a constant heating rate of 5 degrees C/min. Apparently, I transforms into II, e.g. at a constant temperature of T= 265 degrees C after 5 h. Furthermore, a third phase, III, is observed in the temperature range RT to 70 degrees C, and is caused by a reaction between LiBH4 and water vapor from the atmosphere. Hydrogen release is associated with the decomposition of III at ca. 65 degrees C. (C) 2007 Elsevier B.V. All rights reserved. (Less)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call