Abstract

4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are similar enzymes that catalyze complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. Both enzymes decarboxylate HPP and then hydroxylate the resulting hydroxyphenylacetate (HPA). The hydroxylation reaction catalyzed by HPPD displaces the aceto substituent of HPA in a 1,2-shift to form 2,5-dihydroxyphenylacetate (homogentisate, HG), whereas the hydroxylation reaction of HMS places a hydroxyl on the benzylic carbon forming 3'-hydroxyphenylacetate (S-hydroxymandelate, HMA) without ensuing chemistry. The wild-type form of HPPD and variants of both enzymes uncouple to form both native and non-native products. We have used intermediate partitioning to probe bifurcating steps that form these products by substituting deuteriums for protiums at the benzylic position of the HPP substrate. These substitutions result in altered ratios of products that can be used to calculate kinetic isotope effects (KIE) for the formation of a specific product. For HPPD, secondary normal KIEs indicate that cleavage of the bond in the displacement reaction prior to the shift occurs by a homolytic mechanism. NMR analysis of HG derived from HPPD reacting with enantiomerically pure R-3'-deutero-HPP indicates that no rotation about the bond to the radical occurs, suggesting that collapse of the biradical intermediate is rapid. The production of HMA was observed in HMS and HPPD variant reactions. HMS hydroxylates to form exclusively S-hydroxymandelate. When HMS is reacted with R-3'-deutero-HPP, the observed kinetic isotope effect represents geometry changes in the initial transition state for the nonabstracted proton. These data show evidence of sp(3) hybridization in a HPPD variant and sp(2) hybridization in HMS variants, suggesting that HMS stabilizes a more advanced transition state in order to catalyze H-atom abstraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.