Abstract

The Fock space multireference coupled cluster (FSMRCC) method provides an efficient approach for the direct calculation of excitation energies. In intermediate Hamiltonian (IH-FSMRCC) formulation, the method is free from intruder state problems and associated convergence difficulties, even with a large model space. In this paper, we demonstrate that the IH-FSMRCC method with suitably chosen model space can be used for the accurate description of core excitation spectra of molecules, and our results are in excellent agreement with the experimental values. We have investigated the effect of choice of model space on the computed results. Unlike the equation-of-motion (EOM)-based method, the IH-FSMRCC does not require any special technique for convergence and in singles and doubles approximation gives a performance comparable to that of the standard EOMEE-CCSD method, even better in some of the cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call