Abstract

In a recent work [Phys. Rev. Lett. {\bf 108}, 136401 (2012)] we have addressed the problem of a Luttinger liquid with a scatterer that allows for both coherent and incoherent scattering channels. We have found that the physics associated with this model is qualitatively different from the elastic impurity setup analyzed by Kane and Fisher, and from the inelastic scattering scenario studied by Furusaki and Matveev, thus proposing a new paradigmatic picture of Luttinger liquid with an impurity. Here we present an extensive study of the renormalization group flows for this problem, the fixed point landscape, and scaling near those fixed points. Our analysis is non-perturbative in the elastic tunneling amplitudes, employing an instanton calculation in one or two of the available elastic tunneling channels. Our analysis accounts for non-trivial Klein factors, which represent anyonic or fermionic statistics. These Klein factors need to be taken into account due to the fact that higher order tunneling processes take place. In particular we find a stable fixed point, where an incoming current is split ${1 \over 2}$ - $1\over 2$ between a forward and a backward scattered beams. This intermediate fixed point, between complete backscattering and full forward scattering, is stable for the Luttinger parameter $g<1$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.