Abstract

Aggregation of amyloid β (Aβ) peptides into extracellular plaques is a hallmark of the molecular pathology of Alzheimer's disease (AD). Amyloid aggregates have been extensively studied in vitro, and it is well-known that mature amyloid fibrils contain an ordered parallel β structure. The structural evolution from unaggregated peptide to fibrils can be mediated through intermediate structures that deviate significantly from mature fibrils, such as antiparallel β-sheets. However, it is currently unknown if these intermediate structures exist in plaques, which limits the translation of findings from in vitro structural characterizations of amyloid aggregates to AD. This arises from the inability to extend common structural biology techniques to ex vivo tissue measurements. Here we report the use of infrared (IR) imaging, wherein we can spatially localize plaques and probe their protein structural distributions with the molecular sensitivity of IR spectroscopy. Analyzing individual plaques in AD tissues, we demonstrate that fibrillar amyloid plaques exhibit antiparallel β-sheet signatures, thus providing a direct connection between in vitro structures and amyloid aggregates in the AD brain. We further validate results with IR imaging of in vitro aggregates and show that the antiparallel β-sheet structure is a distinct structural facet of amyloid fibrils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.