Abstract

AbstractSurface morphologies formed by the phase segregation of poly(styrene‐b‐ethylene/butylene‐b‐styrene) (SEBS)/poly(methyl methacrylate) (PMMA) blend films prepared via spin coating on mica substrates were studied with atomic force microscopy accompanied by a solvent extraction treatment, X‐ray photoelectron spectroscopy, and contact‐angle measurements. Three kinds of surface structures of films were observed. Besides the ribbonlike morphology and the dispersed domains in a continuous matrix that are common in this field, we found a special interlocking layer structure characterized by a smooth SEBS layer as the cover on the top and a layer composed of hill‐like PMMA dispersed in the SEBS matrix at the bottom when the composition of the film was around 50:50 SEBS and PMMA. A series of blend films with different thicknesses were then prepared to investigate the interfacial structure, and the formation process of the interlocking layer, which could be elucidated by a schematic diagram, was discussed. The interlocking bilayer film with SEBS on the top possessed high thermal stability and the best surface roughness in comparison with other structures. It might find important technical applications in fields such as adhesion, lubrication, and protective coatings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 532–543, 2007.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call