Abstract

This study analyzed the diversity and abundance of diatom frustules including the ancillary parameters using the core top sediments from five locations (21, 19, 15, 13, and 11°N) along the central Arabian Sea (64°E), an area profoundly influenced by atmospheric forcing (monsoons) and oxygen minimum zone (OMZ) with high spatial variability. Significantly higher organic carbon (0.97 ± 0.05%) and diatom frustules (5.92 ± 0.57 × 104 valves g-1) were noticed in the north (21, 19, 15°N) where natural nutrient enrichment via open-ocean upwelling, winter convection, and lateral advection support large diatom-dominated phytoplankton blooms and intense OMZ. Conversely, the south (13, 11°N) depicted significantly lower organic carbon (0.74 ± 0.08%) as well as frustules (4.02 ± 0.87 × 104 valves g-1) as this area mostly remains nutrient-poor dominated by small-medium-sized phytoplankton. The north was dominated by large-sized diatoms like Coscinodiscus that could escape grazing and sink consequently due to higher ballasting. Furthermore, the presence of the intense OMZ in the north might reduce grazing pressure (low zooplankton stock) and mineralization speed facilitating higher phytodetritus transport. Relatively smaller chain-forming centric (Thalassiosira) and pennate diatoms (Pseudo-nitzschia, Fragilaria, Nitzschia, etc.) were found throughout the transect with higher abundance in the south. The euphotic diatom diversity from the existing literature was compared with the frustule diversity from the sediments suggesting not all diatoms make their way to the abyss. Such distinct spatial north-south variability in diatom frustule size as well as abundance could be attributed to cell size, grazing, and water column mineralization rates related to OMZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call