Abstract

The transcription factors STAT5A and STAT5B (STAT: signal transducer and activator of transcription) play a major role in the signaling events elicited by a number of growth factor and cytokine receptors. In this work, we aimed to investigate the role of STAT5 in human precursor B cell survival by introducing dominant-negative (DN) forms of STAT5A or STAT5B in the 697 pre-B cell line. All clones expressing DN forms of either transcription factor exhibited a higher spontaneous apoptotic rate that was massively enhanced upon interleukin-7 (IL-7) stimulation. This was associated with caspase 8 cleavage, mitochondrial transmembrane potential disruption and caspase 3 activation. However, the DN forms of STAT5 did not alter the expression of Bcl-2, Bax, Bcl-x, Bim, A1 and Mcl1 proteins in IL-7-stimulated cells. The pancaspase inhibitor Z-Val-Ala-Asp-fluoromylmethyl ketone partially suppressed IL-7-mediated mitochondrial transmembrane potential disruption and cell death, suggesting that IL-7 induced the death of DN STAT5 expressing 697 cells through caspase-dependent and -independent mechanisms that both require mitochondrial activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.