Abstract

Overcoming the immunosuppressive state in tumor microenvironments is a critical issue for improving the efficacy of cancer immunotherapy. Interleukin (IL)‐6, a pleiotropic cytokine, is highly produced in the tumor‐bearing host. Previous studies have indicated that IL‐6 suppresses the antigen presentation ability of dendritic cells (DC) through activation of signal transducer and activator of transcription 3 (STAT3). Thus, we focused on the precise effect of the IL‐6/STAT3 signaling cascade on human DC and the subsequent induction of antitumor T cell immune responses. Tumor‐infiltrating CD11b+ CD11c+ cells isolated from colorectal cancer tissues showed strong induction of the IL‐6 gene, downregulated surface expression of human leukocyte antigen (HLA)‐DR, and an attenuated T cell‐stimulating ability compared with those from peripheral blood mononuclear cells, suggesting that the tumor microenvironment suppresses antitumor effector cells. In vitro experiments revealed that IL‐6‐mediated STAT3 activation reduced surface expression of HLA‐DR on CD14+ monocyte‐derived DC. Moreover, we confirmed that cyclooxygenase 2, lysosome protease and arginase activities were involved in the IL‐6‐mediated downregulation of the surface expression levels of HLA class II on human DC. These findings suggest that IL‐6‐mediated STAT3 activation in the tumor microenvironment inhibits functional maturation of DC to activate effector T cells, blocking introduction of antitumor immunity in cancers. Therefore, we propose in this review that blockade of the IL‐6/STAT3 signaling pathway and target molecules in DC may be a promising strategy to improve the efficacy of immunotherapies for cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.