Abstract

IntroductionInterleukin-6 (IL-6) is an important mediator of inflammation. In addition to cells involved in inflammation, sensory nociceptive neurons express the IL-6 signal-transducer glycoprotein 130 (gp130). These neurons are not only involved in pain generation but also produce neurogenic inflammation by release of neuropeptides such as calcitonin gene-related peptide (CGRP). Whether IL-6 activation of sensory neurons contributes to the induction of inflammation is unknown. This study explored whether the action of IL-6 on sensory neurons plays a role in the generation of neurogenic inflammation and arthritis induction.MethodsIn SNS-gp130−/− mice lacking gp130 selectively in sensory neurons and appropriate control littermates (SNS-gp130flox/flox), we induced antigen-induced arthritis (AIA), and assessed swelling, histopathological arthritis scores, pain scores, expression of CGRP in sensory neurons, serum concentrations of CGRP and cytokines, and the cytokine release from single cell suspensions from lymph nodes and spleens. In wild-type mice CGRP release was determined during development of AIA and, in cultured sensory neurons, upon IL-6 stimulation.ResultsCompared to SNS-gp130flox/flox mice SNS-gp130−/− mice showed significantly weaker initial swelling, reduced serum concentrations of CGRP, IL-6, and IL-2, no inflammation-evoked upregulation of CGRP in sensory neurons, but similar histopathological arthritis scores during AIA. During the initial swelling phase of AIA, CGRP was significantly increased in the serum, knee and spleen. In vitro, IL-6 augmented the release of CGRP from cultured sensory neurons. Upon antigen-specific restimulation lymphocytes from SNS-gp130−/− mice released more interleukin-17 and interferon-γ than lymphocytes from SNS-gp130flox/flox mice. In naive lymphocytes from SNS-gp130flox/flox and SNS-gp130−/− mice CGRP reduced the release of IL-2 (a cytokine which inhibits the release of interleukin-17 and interferon-γ).ConclusionsIL-6 signaling in sensory neurons plays a role in the expression of arthritis. Selective deletion of gp130 signaling in sensory neurons reduces the swelling of the joint (most likely by reducing neurogenic inflammation) but increases some proinflammatory systemic cellular responses such as the release of interleukin-17 and interferon-γ from lymphocytes upon antigen-specific restimulation. Thus IL-6 signaling in sensory neurons is not only involved in pain generation but also in the coordination of the inflammatory response.

Highlights

  • Interleukin-6 (IL-6) is an important mediator of inflammation

  • Selective deletion of gp130 signaling in sensory neurons reduces the swelling of the joint but increases some proinflammatory systemic cellular responses such as the release of interleukin-17 and interferon-γ from lymphocytes upon antigen-specific restimulation

  • In order to address the role of IL-6 stimulation of sensory neurons, we studied the development of antigen-induced arthritis (AIA) in sensory neuron specific (SNS)-gp130−/− mice, which lack the IL-6 signal-transducing receptor subunit gp130 selectively in primary sensory neurons

Read more

Summary

Introduction

In addition to cells involved in inflammation, sensory nociceptive neurons express the IL-6 signal-transducer glycoprotein 130 (gp130) These neurons are involved in pain generation and produce neurogenic inflammation by release of neuropeptides such as calcitonin gene-related peptide (CGRP). Methods: In SNS-gp130−/− mice lacking gp130 selectively in sensory neurons and appropriate control littermates (SNS-gp130flox/flox), we induced antigen-induced arthritis (AIA), and assessed swelling, histopathological arthritis scores, pain scores, expression of CGRP in sensory neurons, serum concentrations of CGRP and cytokines, and the cytokine release from single cell suspensions from lymph nodes and spleens. Results: Compared to SNS-gp130flox/flox mice SNS-gp130−/− mice showed significantly weaker initial swelling, reduced serum concentrations of CGRP, IL-6, and IL-2, no inflammation-evoked upregulation of CGRP in sensory neurons, but similar histopathological arthritis scores during AIA. While inhibition of IL-6 signaling significantly attenuates murine arthritis [5,6,7], hyperactive gp130 signaling exacerbates inflammation [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.