Abstract

Paracrine interleukin-6 (IL-6) can mediate neuroendocrine (NE) features, including the acquisition of a neurite-like phenotype and growth arrest in prostate cancer cells. However, little is known about the mechanisms underlying neuroendocrine differentiation induced by IL-6. Immunoblotting was performed to determine the status of RE1-silencing transcription factor (REST) and of neuroendocrine markers such as Neuron-specific Enolase (NSE), chromogranin A and synaptophysin in LNCaP cells treated with IL-6. To further study the impact of REST-mediated repression on neuroendocrine differentiation (NED) in LNCaP cells, either wild-type REST or a dominant-positive form of REST, REST-VP16, in which both repressor domains of REST were replaced with the activation domain of the herpes simplex virus protein VP16, was introduced into LNCaP cells. In this study, we show that REST is suppressed in IL-6-induced neuroendocrine differentiation in LNCaP cells. Overexpression of exogenous REST abrogated IL-6-induced NED in prostate cancer cells. Expression of the recombinant REST-VP16 fusion protein activated REST target genes and other neuronal differentiation genes and produced neuronal physiological properties. In addition, REST protein turnover was accelerated in IL-6 induced NE differentiated LNCaP cells via the ubiquitin-proteasome pathway, accompanied by a decrease in the expression of the deubiquitylase HAUSP, indicating that pathway(s) priming REST degradation may be involved in IL-6 induced NE differentiation. These results demonstrate that REST functions as a major switch of IL-6 induced neuroendocrine differentiation in LNCaP cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.