Abstract

Interleukins (IL), aside from their role in the regulation of the immune cascade, they have also been shown to modulate intestinal transport function. IL-1β is a potent inflammatory cytokine involved in many important cellular functions. The aim of this work was to study the in vitro effect of IL-1β on d-galactose transport across intestinal epithelia in rabbit jejunum and Caco-2 cells. The results showed that d-galactose intestinal absorption was diminished in IL-1β treated jejunum rabbits without affecting the Na+, K+-ATPase activity. The presence of IL-1 cell-surface receptors was confirmed by addition to tissue of a specific IL-1 receptor antagonist (IL-1ra). The cytokine did not inhibit either the uptake of d-galactose nor modified the sodium-glucose transport (SGLT1) protein levels in the brush border membrane vesicles, suggesting an indirect IL effect. The IL-inhibition was significantly reversed in the presence of inhibitors of protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs). The proteasome selective inhibitor completely abolished the IL-effect. Furthermore, the cytokine inhibition on galactose transport related to NF-kB activation was also confirmed in Caco-2 cells. In summary, the direct addition of IL-1β to intestinal epithelia inhibits d-galactose transport by a possible reduction in the SGLT1 activity. This event may be mediated by several transduction pathways activated during the inflammatory processes related to several protein kinases and nuclear factor, NF-kB. The IL-effect is independent of hormonal milieu and nervous stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call