Abstract

Interleukin (IL)-17A is involved in the pathogenesis of allergic rhinitis (AR). Increased expression of IL-17A is correlated with disease severity and nasal eosinophilia. However, the molecular mechanisms by which IL-17A contributes to T-helper 2 cytokine IL-13-driven pathology in AR remain unclear. We sought to obtain mechanistic insight into how IL-17A and IL-13 regulate the epithelial production of eotaxin-3 representing eosinophilic inflammation in AR. Human nasal epithelial cells (HNECs) from AR patients were cultured and stimulated with IL-17A, IL-13, or IL-17A and IL-13. Phosphorylated signal transducer activator of transcription 6 (p-STAT6) and suppressor of cytokine signaling 1 (SOCS1) in HNECs were assayed using Western blotting. Immunocytochemistry was used to determine p-STAT6-positive expression in the cells. Eotaxin-3 expression in the cells and culture supernatants was evaluated using real-time polymerase chain reaction and enzyme-linked immunosorbent assays. Stimulation with IL-13 alone induced STAT6 phosphorylation and promoted p-STAT6 nuclear translocation, leading to eotaxin-3 production by HNECs. These effects were further enhanced by cotreatment with IL-13 and IL-17A, whereas IL-17A alone had no impact on STAT6 or eotaxin-3 expression. Incubation with IL-17A or IL-13 increased the level of SOCS1 protein in the cells, whereas the addition of IL-17A attenuated IL-13-induced SOCS1 expression. IL-17A potentiated IL-13-driven STAT6 activation through the downregulation of SOCS1 expression, leading to enhancement of eotaxin-3 production by HNECs. These factors contributed to eosinophilic inflammation in AR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call