Abstract

Infection of C57BL/6 mice with the moderately virulent Cryptococcus neoformans strain 52D models the complex adaptive immune response observed in HIV-negative patients with persistent fungal lung infections. In this model, Th1 and Th2 responses evolve over time, yet the contribution of interleukin-17A (IL-17A) to antifungal host defense is unknown. In this study, we show that fungal lung infection promoted an increase in Th17 T cells that persisted to 8 weeks postinfection. Our comparison of fungal lung infection in wild-type mice and IL-17A-deficient mice (IL-17A(-/-) mice; C57BL/6 genetic background) demonstrated that late fungal clearance was impaired in the absence of IL-17A. This finding was associated with reduced intracellular containment of the organism within lung macrophages and deficits in the accumulation of total lung leukocytes, including specific reductions in CD11c+ CD11b+ myeloid cells (dendritic cells and exudate macrophages), B cells, and CD8+ T cells, and a nonsignificant trend in the reduction of lung neutrophils. Although IL-17A did not alter the total number of CD4 T cells, decreases in the total number of CD4 T cells and CD8 T cells expressing gamma interferon (IFN-γ) were observed in IL-17A(-/-) mice. Lastly, expression of major histocompatibility complex class II (MHC-II) and the costimulatory molecules CD80 and CD86 on CD11c+ CD11b+ myeloid cells was diminished in IL-17A(-/-) mice. Collectively, these data indicate that IL-17A enhances host defenses against a moderately virulent strain of C. neoformans through effects on leukocyte recruitment, IFN-γ production by CD4 and CD8 T cells, and the activation of lung myeloid cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call