Abstract

Although interleukin-17 (IL-17) contributes to the induction of airway hyperresponsiveness in asthma, its effect on bronchial smooth muscle (BSM) remains largely unknown. Evidence support an involvement of RhoA/Rho-kinase in BSM contraction, and the pathway has now been proposed as a novel target for asthma therapy. To clarify the role of IL-17 on the development of BSM hyperresponsiveness, effects of IL-17A on BSM contractility and RhoA expression were investigated. Male BALB/c mice and cultured human BSM cells (hBSMCs) were used. In the murine model of allergic asthma, BSM hyperresponsiveness with an IL-17A up-regulation in bronchoalveolar lavage fluids were observed. RT-PCR analyses revealed the expression of receptors for IL-17A in mouse BSMs and hBSMCs. In the hBSMCs, incubation with IL-17A caused an up-regulation of RhoA protein. Western blot analyses also revealed phosphorylations of JNKs/ERKs and a down-regulation of IκB-α in the IL-17A-treated hBSMCs, indicating that IL-17A could act on BSM cells directly. However, IL-17A did not activate STAT6, which is also known as a signaling molecule that causes an up-regulation of RhoA when activated by IL-13. On the other hand, IL-17A caused a down-regulation of miR-133a-3p, a microRNA that negatively regulates RhoA translation. In the naive mice, in vivo IL-17A treatment to the airways by intranasal instillation induced a BSM hyperresponsiveness with RhoA protein up-regulation. These findings indicate that IL-17 directly acts on BSM cells and up-regulates RhoA protein probably via a down-regulation of miR-133a-3p, resulting in an induction of the BSM hyperresponsiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call