Abstract

Many of the actions and receptor components of interleukin-13 (IL-13), a pleiotrophic cytokine with immunotherapeutic potential, are shared with IL-4. Because human low-grade astrocytoma cells express IL-4 receptors and their growth is arrested by IL-4, we speculated that IL-13 sensitivity and receptor expression might also be present. The purpose of the current study was to investigate IL-13 receptor components and sensitivity in a series of glial cell lines derived from adult human non-neoplastic cerebral cortex, low-grade astrocytoma, anaplastic astrocytoma, and glioblastoma multiforme. Unlike peripheral blood lymphocytes (PBL), glial cells did not express IL-2 receptor gamma chain. IL-13 receptor alpha-1 (IL-13Ralpha1), however, was present in 11/13 glial lines and PBL. Deficient cell lines were all glioblastoma-derived. All anaplastic astrocytoma and glioblastoma but not other glial lines or PBL expressed IL-13 receptor alpha-2 (IL-13Ralpha2). In non-neoplastic glia, low-grade, and anaplastic astrocytoma, IL-13 decreased DNA synthesis, an effect reversible with antibody to IL-4Ralpha. Results indicate that low-grade astrocytoma cells resemble non-neoplastic glia in terms of IL-13 sensitivity and IL-4Ralpha/IL-13Ralpha1 receptor profile but alterations occur with malignant progression. Glioblastoma cells were uniformly insensitive to IL-13 and, unlike other glia, failed to phosphorylate STAT6 after IL-13 challenge. Data suggest that IL-13 and analysis of IL-13 receptors may have clinical application in glial tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.