Abstract
Bone erosion in rheumatoid arthritis (RA) is partly caused by excessive activation of osteoclasts. Osteoclasts can be derived from RA synovium and their differentiation can be inhibited by osteoprotegerin (OPG), a decoy receptor of the osteoclastogenesis-promoting cytokine receptor activator of nuclear factor κB ligand (RANKL). Fibroblast-like synoviocytes (FLSs) are the main stromal cells in the synovium that can secret OPG. The OPG secretion of FLSs can be modulated by various cytokines. Interleukin (IL)-13 can alleviate bone erosion in RA mouse models, but the mechanisms remain unclear. Therefore, we aimed to investigate whether IL-13 can induce OPG secretion by RA-FLSs, thus ameliorating bone destruction in RA by inhibiting osteoclast differentiation. OPG, RANKL, and IL-13 receptors expression by RA-FLSs were evaluated by RT-qPCR. OPG secretion was determined by ELISA. Western blot was performed to analyse OPG expression and the activation of the STAT6 pathway. IL-13 and (or) OPG siRNA pre-treated RA-FLSs conditioned medium were used in osteoclast induction to test if IL-13 can inhibit osteoclastogenesis by up-regulating OPG in RA-FLSs. Micro-CT and immunofluorescence were performed to determine if IL-13 can induce OPG expression and alleviate bone erosion in vivo. IL-13 can promote OPG expression of RA-FLSs, and the promotion can be overcome by IL-13Rα1 or IL-13Rα2 siRNA transfection, or STAT6 inhibitor. Osteoclast differentiation can be inhibited by IL-13 pre-treated RA-FLSs conditioned medium. The inhibition can be reversed by OPG siRNA transfection. IL-13 injection can increase OPG expression in the joints while reducing bone destruction in collagen-induced arthritis mice. IL-13 can inhibit osteoclastogenesis by up-regulating OPG in RA-FLSs through IL-13 receptors via the STAT6 pathway, thus may ameliorate bone erosion in RA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.