Abstract

The cytokine interleukin 12 (IL-12) has been implicated as a potent stimulator of tissue degradation in the pathogenesis of several inflammatory diseases, including periodontitis. In patients with periodontitis, an increased level of IL-12 is found in serum and gingival crevicular fluid. As inflammatory cytokines have been demonstrated to induce activation of the immunomodulatory properties of mesenchymal stem cells (MSCs), this study aimed to investigate the influence of IL-12 on these properties in human periodontal ligament (hPDL) cells. Human PDL cells were isolated from periodontal tissue and incubated with 0-10 ng/mL of IL-12 for 24 h. The levels of expression of interferon gamma (IFN-γ), indoleamine 2,3-dioxygenase (IDO) and human leukocyte antigen G (HLA-G), as well as of the stem cell markers, CD73, CD90 and CD105, were assessed by quantitative PCR. The level of IFN-γ protein was measured by ELISA, and IDO activity was measured by activity assay. The participation of IFN-γ in the expression of IDO and HLA-G was analyzed using neutralizing antibody against IFN-γ. IL-12 upregulated the expression of IFN-γ in a dose-dependent manner. Moreover, IL-12 induced the expression of the immunomodulatory proteins IDO and HLA-G via an IFN-γ-dependent pathway, as indicated by experiments using an IFN-γ neutralizing antibody. Addition of exogenous IFN-γ upregulated the expression of HLA-G and IDO. Expression of the stem cell markers CD73, CD90 and CD105, as well as the pluripotent markers Nanog homeobox, octamer-binding transcription factor 4 and SRY-box 2, were also upregulated in IL-12-treated hPDL cells. Finally, IL-12 inhibited osteogenic differentiation of the hPDL cells and preserved the self-clonal expansion property of these cells, as assessed by Alizarin Red S staining and the colony-forming unit assay. Expression of IL-12 during periodontitis may play an important role in the control of the inflammatory response via the induction of immunosuppressive molecules by hPDL cells. We hypothesize that this immunomodulatory property of IL-12 will serve as a protective mechanism to preserve a population of stem cells under inflammatory conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call