Abstract

A recent study from this laboratory has shown that the inflammatory mediator, interleukin-1 alpha (IL-1 alpha), stimulates protein kinase A (PKA) activity and adrenocorticotropic hormone (ACTH) secretion from AtT-20 cells without any detectable increase in intracellular cAMP accumulation. The present studies were conducted to determine if cAMP is involved in IL-1 alpha activation of PKA and if PKA is responsible for IL-1 alpha-induced ACTH release from AtT-20 cells. The data are consistent with a novel mechanism of PKA activation that does not involve cAMP. Inhibition of adenylate cyclase with 2'5'-dideoxyadenosine (2'5'-DDA) did not affect IL-1 alpha-induced increases in PKA activity and ACTH secretion. In contrast, CRF-stimulated PKA activity and ACTH secretion were inhibited by 2'5'-DDA. Additional evidence was obtained using the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). IBMX did not alter IL-1 alpha-induced PKA activity or ACTH secretion, yet IBMX potentiated CRF-induced cAMP accumulation. Inhibition of PKA with the PKA inhibitor, H-8, blocked activation of PKA and ACTH secretion by both IL-1 alpha and CRF in AtT-20 cells. These observations demonstrate that 1) the mechanism of IL-1 alpha activation of PKA is independent of adenylate cyclase or cAMP and 2) PKA is used by IL-1 alpha to induce ACTH secretion from AtT-20 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call