Abstract

To test the hypothesis that interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) regulate granulocyte colony-stimulating factor (G-CSF) production by human placental villous core mesenchymal cells. Villous core mesenchymal cells were isolated from placentas at 14-20 weeks' gestation and cultured in vitro. Cells were treated with IL-1 beta or TNF-alpha in dose-response and time-course studies. We measured G-CSF mRNA expression by Northern blot analysis and G-CSF protein production by enzyme-linked immunosorbent assay of the conditioned media. Unstimulated mesenchymal cells expressed negligible G-CSF. Steady-state G-CSF mRNA expression was maximal 3-6 hours after IL-1 beta treatment and 6-18 hours after TNF-alpha treatment. Each cytokine induced G-CSF protein production in dose-and time-dependent manners, with IL-1 beta more potent than TNF-alpha. The G-CSF mRNA expression and G-CSF protein production induced by the combination of both cytokines exceeded that induced by either cytokine alone. Interleukin-1 beta and TNF-alpha stimulate G-CSF production by placental villous core mesenchymal cells in vitro. These results identify a potential mechanism by which villous core mesenchymal cells mediate, in part, the placental response to these two cytokines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.