Abstract

Eosinophilic esophagitis (EoE) is a chronic TH2-assocated inflammatory condition accompanied by substantial impairments in epithelial barrier function and increased numbers of interleukin 9 (IL-9) expressing inflammatory cells. While IL-9 is known to affect barrier function in the intestine, the functional effects of IL-9 on the esophagus are unclear. Herein we aimed to understand the expression of the IL-9 receptor and effects of IL-9 on the epithelium in EoE. We used esophageal biopsies from pediatric EoE patients with active and inactive disease to analyze the expression of the IL-9 receptor, the adherens junction protein E-cadherin and the tight junction protein claudin-1. We treated primary human esophageal epithelial cells with IL-9 to understand its effects on E-cadherin expression and function. Active EoE subjects had increased epithelial expression of IL-9 receptor mRNA and protein (P < 0.05) and decreased membrane bound E-cadherin (P < 0.01) and claudin-1 (P < 0.05) expression. IL-9 receptor expression and mislocalized claudin-1 positively correlated and while membrane bound E-cadherin expression negatively correlated with the degree of histologic epithelial remodeling (P < 0.05). IL-9 decreased epithelial resistance in stratified primary human esophageal epithelial cells (P < 0.01) and membrane bound E-cadherin in epithelial cell monolayers (P < 0.01). These data suggest that IL-9, its receptor, and its effects on E-cadherin may be important mechanisms for epithelial barrier disruption in EoE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.