Abstract

AbstractInterleukin-6 (IL-6) is a critical factor in the regulation of stromal function and hematopoiesis. In vivo bromodeoxyuridine incorporation analysis indicates that the percentage of Lin-Sca-1+ hematopoietic progenitors undergoing DNA synthesis is diminished in IL-6-deficient (IL-6-/-) bone marrow (BM) compared with wild-type BM. Reduced proliferation of IL-6-/- BM progenitors is also observed in IL-6-/- long-term BM cultures, which show defective hematopoietic support as measured by production of total cells, granulocyte macrophage-colony-forming units (CFU-GMs), and erythroid burst-forming units (BFU-Es). Seeding experiments of wild-type and IL-6-/- BM cells on irradiated wild-type or IL-6-deficient stroma indicate that the hematopoietic defect can be attributed to the stromal and not to the hematopoietic component. In IL-6-/- BM, stromal mesenchymal precursors, fibroblast CFUs (CFU-Fs), and stroma-initiating cells (SICs) are reduced to almost 50% of the wild-type BM value. Moreover, IL-6-/- stromata show increased CD34 and CD49e expression and reduced expression of the membrane antigens vascular cell adhesion molecule-1 (VCAM-1), Sca-1, CD49f, and Thy1. These data strongly suggest that IL-6 is an in vivo growth factor for mesenchymal precursors, which are in part implicated in the reduced longevity of the long-term repopulating stem cell compartment of IL-6-/- mice. (Blood. 2004;103:3349-3354)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.