Abstract

BackgroundHuman tuberculosis (TB), a chronic inflammatory disease is caused by Mycobacterium tuberculosis, a facultative intramacrophage pathogen. The highly complex interactions between mycobacteria and macrophages (MΦs), characterized in part by the induction and elaboration of several cytokines including IL-1, IL-6, IL-10, IL-12 p40 and IL-12 p70 are not yet fully understood. The cytokines are known to have important bearing on the pathogenesis and host defense during TB. We thus studied different patterns of cytokines elaborated by mouse peritoneal macrophages (PMs) following their interaction with live and heat-killed, virulent and avirulent, and pathogenic and non-pathogenic mycobacteria, in vitro.Materials and methodsPathogenic M. tuberculosis H37Rv (virulent) and M. tuberculosis H37Ra (avirulent), and non-pathogenic M. smegmatis were grown in complete Middle Brook 7H9 broth. For some experiments, mycobacteria were heat-killed (80°C; 20 min). The supernatants of cultured PMs, having ingested mycobacteria for 6 h, 24 h, 4 days and 7 days, were harvested for the quantification of IL-1, IL-6, IL-10, IL-12 p40 and IL-12 p70 by using a multiplex suspension cytokine array system.ResultsThe PMs infected with heat-killed mycobacteria, as compared to their respective live counterparts, invariably elaborated significantly (p < 0.001) increased (approximately 2–3-fold) amounts of IL-6, at all the time-points studied, in vitro. Further, PMs infected with M. tuberculosis H37Ra, as compared to M. tuberculosis H37Rv, elaborated 4–5-fold more (p < 0.001) IL-6. Non-pathogenic M. smegmatis, as compared to pathogenic M. tuberculosis H37Ra and M. tuberculosis H37Rv, following infection, induced the PMs to elaborate highest (p < 0.001) amounts of IL-6 at all the time-points studied. Curiously, none of these mycobacteria-infected PMs elaborated IL-1, IL-10, IL-12 p40 and IL-12 p70, significantly.ConclusionIL-6 appears to be the only major cytokine elaborated by mycobacteria-infected PMs, in vitro, and thus may function as a potent biomarker of mycobacterial infection, either stand-alone or along with other cytokines.

Highlights

  • Tuberculosis (TB) continues to be a major public health problem, and is responsible for an estimated 1.4 million deaths and 8.7 million new cases every year (World Health Organization, 2012)

  • The peritoneal macrophages (PMs) infected with heat-killed mycobacteria, as compared to their respective live counterparts, invariably elaborated significantly (p < 0.001) increased amounts of IL-6, at all the time-points studied, in vitro

  • PMs infected with M. tuberculosis H37Ra, as compared to M. tuberculosis H37Rv, elaborated 4–5-fold more (p < 0.001) IL-6

Read more

Summary

Introduction

Tuberculosis (TB) continues to be a major public health problem, and is responsible for an estimated 1.4 million deaths and 8.7 million new cases every year (World Health Organization, 2012). During TB, macrophages (MΦs) are the first host cells to interact with M. tuberculosis, and function as the major habitat center for its intracellular multiplication and growth. The interaction of MΦs, one of the key elements involved in immunity to TB, with various mycobacterial strains is known to ensue in the differential induction and elaboration of several pro-inflammatory [interleukin-1β (IL-1β), IL-6, IL-12, tumor necrosis factor-α (TNF-α), granulocyte-macrophage (GM) colony-stimulating factor (CSF; GM-CSF), granulocyte-CSF (G-CSF)] and antiinflammatory cytokines including IL-10. The highly complex interactions between mycobacteria and macrophages (MΦs), characterized in part by the induction and elaboration of several cytokines including IL-1, IL-6, IL-10, IL-12 p40 and IL-12 p70 are not yet fully understood. We studied different patterns of cytokines elaborated by mouse peritoneal macrophages (PMs) following their interaction with live and heat-killed, virulent and avirulent, and pathogenic and non-pathogenic mycobacteria, in vitro

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call