Abstract

Tissue engineering technology offers a promising solution for ear reconstruction; however, it faces the challenge of foreign body reaction and neocartilage malformation. This study investigates the impact of interleukin-4 (IL-4), an anti-inflammatory factor, on cartilage regeneration of hydrogel encapsulating autologous auricular chondrocytes in a rabbit subcutaneous environment. Initially, we assessed the influence of IL-4 on chondrocyte proliferation and determined the appropriate concentration using the CCK-8 test in vitro. Subsequently, we loaded IL-4 into gelatin methacryloyl (GelMA) hydrogel containing chondrocytes and measured its release profile through ELISA. The constructs were then implanted autologously into rabbits' subcutis, and after 3, 7, 14, and 28 days, cartilage matrix formation was evaluated by histological examinations, and gene expression levels were detected by qRT-PCR. Results demonstrated that IL-4 promotes chondrocyte proliferation in vitro, and maximum release from constructs occurred during the first week. In the rabbit subcutaneous implantation model, IL-4-loaded constructs (20 ng/mL) maintained a superior chondrocytic phenotype compared to controls with increased expression of anti-inflammatory factors. These findings highlight IL-4 as a potential strategy for promoting chondrogenesis in a subcutaneous environment and improving ear reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.