Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease. Its pathological features include synovial inflammation, bone erosion, and joint structural damage. Our previous studies have shown that interleukin (IL)-35 is involved in the pathogenesis of bone loss in RA patients. In this study, we are further evaluating the efficacy of IL-35 on collagen-induced arthritis (CIA) in the mouse model.Male DBA/1J mice (n = 10) were initially immunized, 2 μg/mouse IL-35 was injected intraperitoneally every week for 3 weeks after the establishment of the CIA model. Clinical arthritis, histopathological analysis, and three-dimensional micro-computed tomography (3D micro-CT) were determined after the mice were anesthetized on the 42th day. In vitro, RANKL/M-CSF induced mouse preosteoclasts (RAW264.7 cells line) was subjected to antiarthritis mechanism study in the presence of IL-35.The results of clinical arthritis, histopathological analysis, and 3D micro-CT, the expression of RANK/RANKL/OPG axis, inflammatory cytokines, and osteoclastogenesis-related makers demonstrated decreasing severity of synovitis and bone destruction in the ankle joints after IL-35 treatment. Furthermore, IL-35 attenuated inflammatory cytokine production and the expression of osteoclastogenesis-related makers in a mouse preosteoclasts cell line RAW264.7. The osteoclastogenesis-related makers were significantly reduced in IL-35 treated RAW264.7 cells line after blockage with the JAK/STAT1 signaling pathway. These results demonstrated that IL-35 protein could inhibits osteoclastogenesis and attenuates CIA in mice.We concluded that IL-35 can exhibit anti-osteoclastogenesis effects by reducing the expression of inflammatory cytokines and osteoclastogenesis-related makers, thus alleviating bone destruction in the ankle joint and could be a potential therapeutic target for RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.