Abstract

Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing.Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs. Furthermore, we showed that stimulation of THP-1-derived macrophages with recombinant-human IL27 induced the activation of the JAK-STAT signaling and induced a robust pro-inflammatory and antiviral response, comparable to CHIKV-infected MDMs. Furthermore, pre-treatment of MDMs with recombinant-human IL27 inhibits CHIKV replication in a dose-dependently manner (IC50 = 1.83 ng/mL). Altogether, results show that IL27 is highly expressed in CHIKV-infected MDMs, leading to activation of JAK-STAT signaling and stimulation of pro-inflammatory and antiviral response to control CHIKV replication in an IFN-independent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call