Abstract
The study aimed to identify an immunoregulatory factor that restores the phosphoantigen response of Vγ9Vδ2+ T cells from HIV-positive individuals on antiretroviral therapy. It was designed to characterize the effects of interleukin-18 (IL-18) on proliferation and effector function in Vγ9Vδ2 T cells from HIV-negative individuals and test whether exogenous IL-18 reconstitutes the Vγ9Vδ2 T-cell response to phosphoantigen from HIV-positive donors. Vγ9Vδ2 T cells from HIV-negative individuals responded strongly to phosphoantigen or aminobisphosphonate stimulation of peripheral blood mononuclear cells (PBMC), whereas cells with similar T-cell receptor profiles from HIV-positive individuals only responded to aminobisphosphonate. Interleukin-18 was higher after aminobisphosphonate stimulation due to activation of the inflammasome pathway. Both IL-18 and IL-18 receptor levels were measured and the activity of exogenous IL-18 on HIV-negative and HIV-positive PBMC was evaluated in terms of Vγ9Vδ2 T-cell proliferation, memory subsets, cytokine expression and CD107a expression. Interleukin-18 stimulation increased proliferation, enhanced the accumulation of effector memory cells, and increased expression of cytotoxic markers in HIV-negative controls. When Vγ9Vδ2 T cells from HIV-positive individuals were stimulated with isopentenyl pyrophosphate in the presence of IL-18, there was increased proliferation, accumulation of memory cells, and higher expression of CD56, NKG2D and CD107a (markers of cytotoxic effector phenotype). Interleukin-18 stimulation specifically expanded the Vγ9-JγP+ subset of Vγ9Vδ2 T cells, as was expected for normal responses to phosphoantigen. Interleukin-18 is a potent stimulator of Vγ9Vδ2 T-cell proliferation and effector function. Therapies directed at reconstituting Vγ9Vδ2 T-cell activity in HIV-positive individuals should include stimulators of IL-18 or direct cytokine supplementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.