Abstract

Interleukin IL-17F was expressed in colon epithelial cells and showed multiple functions in colon tumorigenesis. However, the role of IL-17F in colon cancer cell cycle progression remains unclear. In this study, we analyzed the effects of IL-17F on oxidant-induced cell cycle shift in human colon cancer cells. IL-17F overexpressing and wildtype HCT116 cells were challenged with H2O2. Cell cycle distribution analysis showed IL-17F attenuated H2O2-induced G2/M phase arrest by inhibiting S to G2/M transition. We further checked expression levels of two critical cell cycle regulators p21 and p27. The results showed that IL-17F could inhibit H2O2 induced p27 up-regulation. Meanwhile, IL-17F could increase the phosphorylation of p38 after H2O2 treatment. The regulations of p27 level and p38 activity may contribute to the impaired G2/M phase arrest by IL-17F. Taken together, our findings extend IL-17F as an important factor in colon cancer development and provide new insight into the signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.