Abstract

BackgroundMesenchymal stem cells (MSCs) have the potential of self-renewal and multi-differentiation and have a wide application prospect in organ transplantation for the effect of inducing immune tolerance. It has found that interleukin 17 (IL-17) could enhance the inhibition effect of MSCs on T cell proliferation and increase the immunosuppressive effect of MSCs. In this study, we aimed to investigate the effect of IL-17-induced MSCs on allograft survival time after transplantation.Material/MethodsBMSCs were characterized by differential staining. The allogenic skin transplantations were performed and the BMSCs pre-treated by IL-17 were injected. To assess the immunosuppressive function of IL-17-induced BMSCs, the morphology of the grafts, the homing ability of the BMSCs, and the survival time of the grafts were analyzed.ResultsBMSCs from BALB/c have multidirectional differentiation potential to differentiate into osteogenic, chondrogenic, and adipogenic lineage cells. IL-17-induced BMSCs prolonged the survival time of allogeneic skin grafts dramatically. We found that there were more labeled MSCs in the skin grafts, and the Treg subpopulations percentage, IL-10, and TGF-β were significantly increased, while the IFN-γ level was decreased compared to the control group and MSCs group. In conclusion, IL-17 can enhance the homing ability of MSCs and regulate the immunosuppressive function of MSC.ConclusionsOur data demonstrate that IL-17 plays the crucial role in MSC homing behaviors and promotes immunosuppression of MSCs during transplantation procedures, suggesting that IL-17-pre-treated MSCs have potential to prolong graft survival and reduce transplant rejection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call