Abstract
BackgroundInterleukin (IL) 11 is produced by human endometrium and endometrial cancer tissue. It has roles in endometrial epithelial cell adhesion and trophoblast cell invasion, two important processes in cancer progression. This study aimed to determine the levels of IL11 in uterine lavage fluid in women with endometrial cancer and postmenopausal women. It further aimed to determine the levels of IL11 protein and its signaling molecules in human endometrial cancer of varying grades, and endometrium from postmenopausal women and IL11 signalling mechanisms in endometrial cancer cell lines.MethodsIL11 levels in uterine lavage were measured by ELISA. IL11, IL11 receptor(R) α, phosphorylated (p) STAT3 and SOCS3 were examined by immunohistochemistry in endometrial carcinomas and in control endometrium from postmenopausal women and normal cycling women. The effect of IL11 on pSTAT3/STAT3 and SOCS3 protein abundance in endometrial cancer cell lines and non-cancer endometrial epithelial cells was determined by Western blot.ResultsIL11 was present in uterine flushings and was significantly higher in women with Grade 1 carcinomas compared to postmenopausal women (p < 0.05). IL11 immunostaining was significantly elevated in the endometrial tumour epithelial cells from Grade 1 and 3 compared to endometrial epithelium from postmenopausal and cycling women. IL11Rα immunostaining intensity was increased in cancer epithelium in the Grades 1 and 2 tumours compared to epithelium from postmenopausal women. Both IL11 and IL11Rα localized to vascular endothelial and smooth muscle cells while IL11 also localized to subsets of leucocytes in the cancer tissues. pSTAT3 was found in both the tumour epithelial and stromal compartments but was maximal in the tumour epithelial cells, while SOCS3 was predominantly found in the tumour epithelial cells. pSTAT3 staining intensity was significantly higher in Grade 1 and 2 tumour epithelial cells compared to epithelial cells from cycling and postmenopausal women. SOCS3 staining intensity did not differ between between each tumour and postmenopausal endometrial epithelium but SOCS3 in cycling endometrium was significantly higher compared to postmonopausal and Tumour Grades 2 and 3. IL11 increased pSTAT3/STAT3 in all tumour cell lines, while SOCS3 abundance was increased only in one tumour cell line.ConclusionsThe present study suggests that IL11 in uterine washings may be useful as a diagnostic marker for early stage endometrial cancer. It indicates that IL11, along with its specific receptor, IL11Rα, and downstream signalling molecules, STAT3 and SOCS3, are likely to play a role in the progression of endometrial carcinoma. The precise role of IL11 in endometrial cancer remains to be elucidated.
Highlights
Interleukin (IL) 11 is produced by human endometrium and endometrial cancer tissue
We recently showed that IL11 regulates human endometrial epithelial cell adhesion and the migration and invasion of human trophoblast cells [10,21,22]
This study was the first to show that IL11 protein was increased in uterine fluid and endometrial tumour epithelial cells in women with Grade 1 endometrial carcinoma compared to postmenopausal women
Summary
Interleukin (IL) 11 is produced by human endometrium and endometrial cancer tissue. It has roles in endometrial epithelial cell adhesion and trophoblast cell invasion, two important processes in cancer progression. It further aimed to determine the levels of IL11 protein and its signaling molecules in human endometrial cancer of varying grades, and endometrium from postmenopausal women and IL11 signalling mechanisms in endometrial cancer cell lines. The inducible suppressor of cytokine signalling (SOCS) proteins, a family with 8 members (SOCS1-SOCS7 and CIS), are expressed in response to cytokine stimulation of STAT phosphorylation acting in a negative feedback mechanism to hinder the activities of cytokine receptors [8,9]. A recent study had identified that IL11 and IL11Rα are expressed in endometrial cancer [13], there are no studies comparing the levels of IL11 protein in endometrial cancer and postmenopausal women in whom the vast majority of endometrial cancers develop It is not knownswhether IL11 downstream signalling is active in endometrial cancer, which would suggest a role for IL11 in carcinogenesis
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.