Abstract

Liver dendritic cells (DCs), which may orchestrate the liver's unique immunoregulatory functions, remain poorly characterized. We used a technique of overnight migration from pieces of normal human liver and skin to obtain tissue-derived DCs with minimal culture and no additional cytokine treatment. Liver and skin DCs had a monocyte-like morphology and a partially mature phenotype, expressing myeloid markers, MHCII, and co-stimulatory molecules; but only the skin DCs contained a population of CD1a+ cells. Overnight-migrated liver DCs activated naïve cord blood T cells efficiently. Liver DCs produced interleukin (IL)-10 whereas skin DCs failed to secrete IL-10 even after stimulation and neither skin nor liver-derived DCs secreted significant amounts of IL-12p70. Compared with skin DCs, liver DCs were less effective at stimulating T-cell proliferation and stimulated T cells to produce IL-10 and IL-4 whereas skin DCs were more potent stimulators of interferon-gamma and IL-4. Monocyte-derived DCs were down-regulated after culture with liver-conditioned media, suggesting that local microenvironmental factors may be important. Thus we show for the first time clear tissue-specific differences in nonlymphoid DCs. Although it is not possible to conclude from our data whether liver DCs are more regulatory, or skin DCs more proimmunogenic, the ability of liver DCs to secrete IL-10 may be important for regulating local immune responses within the liver in the face of constant exposure to gut antigens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.