Abstract

Glioma is one of the leading causes of death worldwide with high incidence, recurrence, and mortality. Interleukin-10 (IL-10) is a cytokine with dual function in many types of tumors. Although IL-10 is overexpressed and promotes tumor progression in human primary brain tumor, the mechanisms are largely unknown. Glioma cells were treated with different dosages of IL-10. The cell growth was detected by CCK-8, and the invasion was measured by Transwell. The relative expression of messenger RNAs was detected by quantitative real-time polymerase chain reaction. We found that IL-10 treatment significantly enhanced glioma cell growth and invasion. Moreover, KPNA2 was significantly upregulated after treatment with IL-10. By performing knockdown experiments, we found that the glioma cell growth and invasion were significantly declined. The results indicated that knockdown of KPNA2 significantly inhibited the growth and invasion of glioma cells. Moreover, IL-10 promotes glioma progression via upregulation of KPNA2. This study will be of important significance and provides a potential target for treatment of patients with glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.