Abstract
NADPH oxidase 1 (Nox1) is preferentially expressed in the colon, but its functional role is not fully understood. This study was designed to elucidate a potential role of Nox1 in inflammation of the colon. Superoxide production by T84 cells was measured by the cytochrome c method. Protein and mRNA levels of Nox1 and Nox organizer 1 (NOXO1) in the cells were measured by real-time reverse transcriptase PCR and Western blotting, respectively. Expression of Nox1, Nox2, dual oxidase 2 (Duox2), NOXO1, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha mRNAs was measured in proximal, middle, and distal portions of colonic mucosas from male wild-type C57BL/6J and interleukin (IL)-10 knockout mice at 6, 10, and 16 weeks of age. Grading of inflammation was done by scoring histological changes. IL-10 significantly inhibited IFN-gamma- or TNF-alpha-induced up-regulation of superoxide-producing activity in T84 cells by suppressing expression of Nox1 mRNA and protein. IL-10 also inhibited TNF-alpha-stimulated induction of NOXO1 and p38 MAPK phosphorylation. Levels of Nox1, but not Nox2 or Duox2 mRNA, was age-dependently increased following a gradient with low levels in the proximal colon and high levels in the distal colon of the wild-type mice. The absence of IL-10 significantly facilitated Nox1 expression in association with increased IFN-gamma mRNA expression before the development of spontaneous colitis and age-dependently accelerated their mRNA expression. IL-10 may be a possible down-regulator of the Nox1-based oxidase in the colon, suggesting a potential role of reactive oxygen species (ROS) derived from Nox1-based oxidase in inflammation of the colon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.