Abstract
Melanoma shows highly aggressive behavior (i.e., local invasion and metastasis). Matrix metalloprotease-3 (MMP-3), a zinc-dependent endopeptidase, degrades several extracellular substrates and contributes to local invasion by creating a microenvironment suitable for tumor development. Here, we report that interleukin-1β (IL-1β) triggers the MMP-3 expression in canine melanoma cells. The activity of MMP-3 in the culture supernatant was increased in IL-1β-treated melanoma cells. IL-1β time- and dose-dependently provoked the mRNA expression of MMP-3. IL-1β induced the migration of melanoma cells; however, this migration was attenuated by UK356618, an MMP-3 inhibitor. When the cells were treated with the nuclear factor-κB (NF-κB) inhibitor TPCA-1, the inhibition of MMP-3 expression was observed. In IL-1β-treated cells, the phosphorylation both of p65/RelA and p105 was detected, indicating NF-κB pathway activation. In p65/RelA-depleted melanoma cells, IL-1β-mediated mRNA expression of MMP-3 was inhibited, whereas this reduction was not observed in p105-depleted cells. These findings suggest that MMP-3 expression in melanoma cells is regulated through IL-1β-mediated p65/RelA activation, which is involved in melanoma cell migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.