Abstract

The purpose of this study was to investigate the effects of interleukin-1β (IL-1β) stimulation on the protection of macrophage derived exosomes miR-146a (M-IL-exo-146a) on sepsis induced myocardial injury (SMI) in vitro and in vivo. Macrophage derived exosomes (M-exo) and IL-1β stimulated macrophage exosomes (M-IL-exo) were isolated from macrophages of sepsis with or without IL-1β. The expressions of miR-146a in M-exo and M- IL-exo were detected by fluorescence quantitative PCR. Related molecular biology technologies were used to evaluate the role and mechanism of M-exo-146a and M-IL-exo-146a on SMI and the enhancing effect of IL-1β. Compared with M-exo, the expression of miR-146a in M-IL-exo was significantly increased. M-IL-exo-146a significantly alleviated SMI by decreasing the level of serum myocardial enzymes, serum and myocardial oxidative stress and cytokines, and improved myocardial mitochondrial imbalance. The mechanism responsible for IL-1β enhancing the production of IL-M-exo miR-146a was via JNK-1/2 signal pathway. The mechanism responsible for M-exo-IL-miR-146a protecting SMI was related to miR-146a inhibiting inflammatory response and mitochondrial function via MAPK4/Drp1 signal pathway. This study provides a new strategy for the treatment of SMI by delivering IL-1β stimulated macrophage derived exosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.