Abstract

Our recent Sertoli cell (SC) studies showed that the c-Jun N-terminal kinase (JNK) and inducible cyclooxygenase-2 (COX-2) pathways are key regulatory components of IL (IL-1alpha, IL-1beta, and IL-6) expression and START-domain containing StARD1 and StARD5 proteins. IL-1beta regulates SC autocrine/paracrine activities and subsequently influences developing germ cells and spermatogenesis. This study was designed to evaluate whether IL-1beta mediates high-output inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in these specialized epithelial cells and characterize gonadotropin and cytokine-regulation of NO. Purified SCs were maintained in serum-free cultures and treated with FSH (100 ng-1 microg/ml) or IL-1beta (10 ng/ml) in time-course studies. To determine obligatory intracellular pathways, treatments were conducted with or without activity inhibitors: COX-2 selective (NS-398, 10 microM) or JNK (SP600125, 10 microM) for 1, 3, 6, and 24 h. NOS mRNAs and proteins were evaluated by RT-PCR and Western analysis, respectively. NO and reactive oxygen species were measured by flow cytometry and ELISA. IL-1beta transiently induces intracellular NO (30 min) but not reactive oxygen species. Subsequently, iNOS mRNA and protein expression (3-6 h) significantly increased after IL-1beta but not FSH stimulation, and in time-dependent manner, markedly increased extracellular NO (24 h, 8-fold). No change in the constitutive endothelial NOS isoform was observed. Inhibition of JNK, but not COX-2, activity inhibits IL-1beta-induced iNOS expression and NO production. Such findings suggest that intra- and extracellular NO within the tubule may alert SCs monitoring the microenvironment to an aberrant cytokine, triggering antioxidant and antiinflammatory activities to avoid disruption of spermatogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.