Abstract
Objectives: Inflammation is essential for atherogenesis. Cholesterol, a cardiovascular risk factor, may activate inflammation in the vessel wall during this process. Cytokine-mediated interactions of human monocytes with vascular smooth muscle cells (SMCs) may perpetuate this process. Methods: We investigated the capacity of the cholesterol metabolite 25-hydroxycholesterol to induce inflammatory mediators in cocultures of freshly isolated monocytes with SMCs. We determined the role of interleukin-(IL)-1 in this interaction using qPCR, bioassays, ELISA and western blot. Cocultures with SMC to monocyte ratios from 1:4 to 1:20 were tested. Results: In separate SMC and monocyte cultures (monocultures) 25-hydroxycholesterol only poorly activated IL-1, IL-6 and MCP-1 production, whereas LPS stimulated much higher cytokine levels than unstimulated cultures. In contrast, cocultures of SMCs and monocytes stimulated with 25-hydroxycholesterol produced hundredfold higher cytokine levels than the corresponding monocultures. Blocking experiments with IL-1-receptor antagonist showed that IL-1 decisively contributed to the 25-hydroxycholesterol-induced synergistic IL-6 and MCP-1 production. The presence of intracellular IL-1β precursor, released mature IL-1β, and caspase-1 p10 indicated that the inflammasome was involved in this process. Determination of IL-1-mRNA in Transwell experiments indicated that the monocytes are the major source of IL-1, which subsequently activates the SMCs, the primary source of IL-6 in the coculture. Conclusion: Taken together, these interactions between local vessel wall cells and invading monocytes may multiply cholesterol-triggered inflammation in the vessel wall, and IL-1 may play a key role in this process. The data also indicate that lower cholesterol levels than expected from monocultures may suffice to initiate inflammation in the tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.