Abstract

BackgroundPrevious studies have shown that high glucose (HG) induced endothelial cell (EC) damage via a phenotypic transition of EC. There is increasing evidence suggesting the role of inflammatory cytokines in mediated HG-induced EC damage. However, little is known about the potential role of interleukin-1β (IL-1β) in the process. The aim of present study was to investigate whether IL-1β mediated HG–induced phenotypic transition in human aortic endothelial cells (HAECs) and to determine the possible underlying mechanism.MethodsPrimary HAECs were exposed to normal glucose (NG, 5.5 nM), high glucose (HG,30 nM), IL-1β (10 ng/ml), HG + IL-1β (10 ng/ml) and HG + anti-IL-1β antibodies (1000 ng/ml) or HG + IL-1β small interfering RNA (siRNA). Pathological changes were investigated using confocal microscopy and electron microscopy. Confocal microscopy was performed to detect the co-expression of CD31 and fibroblast specific protein 1 (FSP1). To study the effect of protein kinase C-β (PKCβ) activation on IL-1β in HAECs, HAECs were stimulated with 30 nM PMA (PKCβ activator) and 0.3 μM PKCβ inhibition (LY317615) for 48 h in the NG or HG group. The expressions of PKCβ and IL-1β were detected by RT-PCR and Western blot. And the concentration of IL-1β in the supernatant of HAECs was measured by ELISA. The expressions of FSP1, a-SMA and CD31 were detected by Western blot.ResultsIt was shown that the HG resulted in significant increase in the expressions of PKCβ and IL-1β in dose-and time-dependent manners. The HG or exogenous IL-1β alone inhibited the expression of CD31 and markly increased the expressions of FSP1 and α-SMA. Furthermore, we observed that the HG and IL-1β synergistically increased FSP1 and a-SMA expressions compared with the HG or IL-1β alone group (P < 0.05). Confocal microscopy revealed a colocalization of CD31 and FSP1 and that some cells acquired spindle-shaped morphologies and a loss of CD31 staining. Electron microscopy showed that the HG resulted in the increased microfilamentation and a roughened endoplasmic reticulum structure in the cytoplasm. However, the changes above were attenuated by the intervention of anti-IL-1β antibodies or IL-1β siRNA (P < 0.05). In addition, the PMA induced the expressions of PKCβ and IL-1β in HAECs. The PKCβ activation may mediate the effect of the HG on IL-1β production, which could be attenuated by the PKCβ selective inhibitor (LY317615) (P < 0.05).ConclusionsOur findings suggested that HG-induced phenotypic transition of HAECs might require IL-β activation via the PKCβ pathway.

Highlights

  • Previous studies have shown that high glucose (HG) induced endothelial cell (EC) damage via a phenotypic transition of EC

  • The protein kinase C-β (PKCβ) activation may mediate the effect of the HG on IL-1β production, which could be attenuated by the PKCβ selec‐ tive inhibitor (LY317615) (P < 0.05)

  • Our findings suggested that HG-induced phenotypic transition of human aortic endothelial cells (HAECs) might require IL-β activation via the PKCβ pathway

Read more

Summary

Introduction

Previous studies have shown that high glucose (HG) induced endothelial cell (EC) damage via a phenotypic transition of EC. There is increasing evidence suggesting the role of inflammatory cytokines in mediated HG-induced EC damage. The aim of present study was to investigate whether IL-1β mediated HG–induced phenotypic transition in human aortic endothelial cells (HAECs) and to determine the possible underlying mechanism. Vallejo et al [15] indicated that IL-1β correlated with EC damage in a short-term model of type 1 diabetes. Together, these findings indicated that IL-1β may play a key role to EC damage in diabetes.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.