Abstract
To investigate the importance of activation of the transcription factor, nuclear factor-kappaB (NF-kappaB) by interleukin-1beta (IL-1beta) and tumour necrosis factor-alpha (TNF-alpha) in the pathogenesis of osteoarthritis (OA) and assess its suitability as a target for therapy by determining its role in the induction of the cytokine IL-6 and the degenerative enzymes, matrix metalloproteinase (MMP)-1 and MMP-3 in vitro. Three distinct cellular models, derived from primary OA tissue, were employed, namely, fibroblast-like synoviocytes (OA-SF); co-cultures containing phenotypic macrophage-like and fibroblast-like cells (OA-COCUL); and primary OA synovial tissue explants (OA-EXP). These were treated with specific inhibitors of IL-1beta, TNF-alpha and NF-kappaB to assess their differential role in the production of pathologically relevant mediators, specifically IL-6, MMP-1, MMP-3 and the tissue inhibitor of metalloproteinases-1 (TIMP-1), which were quantified by enzyme-linked immunosorbent assay. Inhibition of NF-kappaB by a novel agent, RO100 at a dose of 0.1 microM, exerted significant (P < 0.05) repression of IL-6, MMP-1 and MMP-3 production in OA-SF. Notably, neither TIMP-1 production nor cell viability was significantly affected at the dose tested. These data were reproduced in OA-EXP, which might be considered as having greater physiological relevance. Interestingly, comparable efficacy was noted using IL-1beta and TNF-alpha neutralizing antibodies in OA-COCUL. We have demonstrated that a novel pharmacological inhibitor of NF-kappaB, RO100 inhibits pathological mediators of OA progression with equivalent efficacy as established IL-1beta and TNF-alpha neutralizing strategies. Our findings highlight a potential for developing NF-kappaB targeted therapeutics for positively regulating disease activity and improving clinical outcome in OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.