Abstract

The expression of IL-1 is elevated in the CNS in diverse neurodegenerative disorders, including Alzheimer's disease. The hypothesis was tested that IL-1β renders neurons vulnerable to degeneration by interfering with BDNF-induced neuroprotection. In trophic support-deprived neurons, IL-1β compromised the PI3-K/Akt pathway-mediated protection by BDNF and suppressed Akt activation. The effect was specific as in addition to Akt, the activation of MAPK/ERK, but not PLCγ, was decreased. Activation of CREB, a target of these signaling pathways, was severely depressed by IL-1β. As the cytokine did not influence TrkB receptor and PLCγ activation, IL-1β might have interfered with BDNF signaling at the docking step conveying activation to the PI3-K/Akt and Ras/MAPK pathways. Indeed, IL-1β suppressed the activation of the respective scaffolding proteins IRS-1 and Shc; this effect might involve ceramide generation. IL-1-induced interference with BDNF neuroprotection and signal transduction was corrected, in part, by ceramide production inhibitors and mimicked by the cell-permeable C2-ceramide. These results suggest that IL-1β places neurons at risk by interfering with BDNF signaling involving a ceramide-associated mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.