Abstract

To study the role of interleukin (IL)-1β and the plasminogen activating (PA) system members in endometriotic stromal cell (ESC) migration/invasion. Primary cultures of ESCs. Tertiary referral center for endometriosis and pelvic pain. Patients with surgically excised endometriosis. Interleukin-1β stimulation of primary cultures of ESCs and knockdown of the PA system members urokinase plasminogen activator (uPA), uPA receptor, and plasminogen activator inhibitor-1 (PAI-1). Invasion/migration assays. In primary cultures, IL-1β-stimulated ESC production of the PA system members uPA, uPA receptor, and PAI-1. Interleukin-1β also enhanced ESC migration and invasion, and these effects were inhibited by the IL-1 receptor-1 antagonist anakinra. Knockdown of each of the 3 PA system members also inhibited ESC migration and invasion. Knockdown of these PA system members further attenuated the impact of IL-1β on migration and invasion, suggesting that they mediated the promigration and proinvasion effects of IL-1β. To supplement the cell culture work, immunohistochemistry was performed on tissue sections of endometriotic epithelium/stroma: uPA, PAI-1, and IL-1β histoscores were not found to be correlated with each other. In primary cultures of ESCs, IL-1β induces migration and invasion, which is mediated by PA system members and inhibited by the drug anakinra. However, the immunohistochemistry expression of IL-1β, urokinase plasminogen inhibitor-1, and PAI-1 were not correlated, suggesting other regulatory mechanisms for PA system members. Inhibition of IL-1β (e.g., with anakinra) may have potential as a novel treatment approach for the migration/invasion of endometriosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call