Abstract

To investigate the effects of interleukin-1β (IL-1β) and methylprednisolone acetate (MPA) on equine intrabursal deep digital flexor tendon (DDFT) and navicular bone fibrocartilage (NBF) cells in vitro. Third passage DDFT and NBF cells from 5 healthy donor horses ages 11-17 years euthanized for reasons unrelated to musculoskeletal conditions. Aggregate cultures were incubated with culture medium alone (control), 10 ng/mL IL-1β, 10 ng/mL IL-1β + 0.05 mg/mL MPA, or 10 ng/mL IL-1β + 0.5 mg/mL MPA for 24 hours. Extracellular matrix (ECM) gene expressions were assessed via real-time polymerase chain reaction (rtPCR). Culture media matrix metalloproteinase (MMP) -3 and -13 concentrations were quantified via ELISA. Total glycosaminoglycan (GAG) content in the cell pellets and culture media was also assessed. IL-1β and IL-1β combined with MPA significantly downregulated ECM gene expression to a greater extent in NBF cells compared with DDFT cells. IL-1β and IL-1β combined with MPA significantly upregulated MMP-3 culture media concentrations in DDFT cells only, and MMP-13 culture media concentrations to a greater extent in NBF cells compared with DDFT cells. NBF cells were more susceptible to IL-1β and MPA-mediated ECM gene expression downregulation in vitro. These results serve as a first step for future work to determine intrabursal corticosteroid regimens that limits or resolve the inflammation as well as take into consideration NBF cell biosynthesis in horses with navicular disease, for which currently no information exists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call