Abstract

There is much interest in defining the signals that initiate abnormal proliferation of cells in a variety of states characterized by the presence of mononuclear phagocytes. Since IL-1 is a major secretory product of activated human monocytes we examined whether this cytokine can stimulate the growth of human vascular smooth muscle cells (SMC). Neither recombinant IL-1 (rIL-1) alpha (less than or equal to 5.0 ng/ml) nor beta (less than or equal to 100 ng/ml) stimulated SMC growth during 2-d incubations under usual conditions. IL-1 did stimulate SMC to produce prostanoids such as PGE1 or PGE2 that can inhibit SMC proliferation. When prostaglandin synthesis was inhibited by indomethacin or aspirin both rIL-1 alpha and beta (greater than or equal to 1 ng/ml) markedly increased SMC growth. In longer-term experiments (7-28 d) rIL-1 stimulated the growth of SMC even in the absence of cyclooxygenase inhibitors. The addition of exogenous PGE1 or PGE2 (but not PGF1 alpha, PGF2 alpha, PGI2) to indomethacin-treated SMC blocked their mitogenic response to rIL-1. Antibody to IL-1 (but not to platelet-derived growth factor [PDGF]) abolished the mitogenic response of SMC to rIL-1. Exposure of SMC to rIL-1 or PDGF caused rapid (maximal at 1 h) and transient (baseline by 3 h) expression of the c-fos proto-oncogene, determined by Northern analysis. We conclude that IL-1 is a potent mitogen for human SMC. Endogenous prostanoid production simultaneously induced by IL-1 appears to antagonize this growth-promoting effect in the short term (2 d) but not during more prolonged exposures. IL-1 produced by activated monocytes at sites of tissue inflammation or injury may thus mediate both positive and negative effects on SMC proliferation that are temporally distinct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.