Abstract

The paper explores interleaved and coordinated refinement of physics- and data-driven models in describing transient phenomena in large-scale power systems. We develop and study an integrated analytical and computational data-driven gray box environment needed to achieve this aim. Main ingredients include computational differential geometry-based model reduction, optimization-based compressed sensing, and a finite approximation of the Koopman operator. The proposed two-step procedure (the model reduction by differential geometric (information geometry) tools, and data refinement by the compressed sensing and Koopman theory based dynamics prediction) is illustrated on the multi-machine benchmark example of IEEE 14-bus system with renewable sources, where the results are shown for doubly-fed induction generator (DFIG) with local measurements in the connection point. The algorithm is directly applicable to identification of other dynamic components (for example, dynamic loads).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call