Abstract

To develop a multiplanar magnetic resonance temperature imaging (MRTI) technique based on interleaved gradient-echo echo-planar imaging (EPI), verify in phantom, develop software tools to process and display data on a clinical scanner in near real-time, and demonstrate feasibility to monitor ultrasound thermal ablation therapy in vivo. Temperature estimation used complex phase-difference subtraction of the EPI MRTI data to indirectly measure the temperature-dependent water proton-resonance-frequency shift. Software tools were developed to run on a clinical 1.5-T MR scanner that processed and displayed relevant temperature and thermal dosimetry data during the course of thermal ablation treatments in canine brain and prostate in vivo. EPI MRTI provided multi-planar acquisitions and increased temperature sensitivity and lipid suppression. Relative to a single-plane fast gradient-echo MRTI sequence at comparable spatial and temporal resolutions in phantom, EPI MRTI demonstrated a three-fold increase in sensitivity and slice coverage per TR. In vivo monitoring of ultrasound thermal ablation therapy in canine brain and prostate demonstrated the usefulness of the temperature and thermal dose information. Multi-planar MRTI allowed progression of thermal damage to be monitored and treatment parameters adjusted in near real-time (less than five second delay). EPI MRTI is an effective multi-planar monitoring method during ultrasound thermal ablation procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.