Abstract
The coding gain of a constraint-length-three, rate one-half convolutional code over a long clear-air atmospheric direct-detection optical communication channel using binary pulse-position modulation signalling is directly measured as a function of interleaving delay for both hard- and soft-decision Viterbi decoding. Maximum coding gains theoretically possible for this code with perfect interleaving and physically unrealizable perfect-measurement decoding were about 7 dB under conditions of weak clear-air turbulence, and 11 dB at moderate turbulence levels. The time scale of the fading (memory) of the channel was directly measured to be tens to hundreds of milliseconds, depending on turbulence levels. Interleaving delays of 5 ms between transmission of the first and second channel bits output by the encoder yield coding gains within 1.5 dB of theoretical limits with soft-decision Viterbi decoding. Coding gains of 4-5 dB were observed with only 100 mu s of interleaving delay. Soft-decision Viterbi decoding always yielded 1-2 dB more coding gain than hard-decision Viterbi decoding.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.